123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- from fastapi import APIRouter, Request, Depends, Query, HTTPException, status
- from common.security import valid_access_token
- from fastapi.responses import JSONResponse
- from sqlalchemy.orm import Session
- from sqlalchemy import and_, or_
- from sqlalchemy.sql import func
- from sqlalchemy.future import select
- from common.auth_user import *
- from pydantic import BaseModel
- from database import get_db
- from typing import List
- from models import *
- from utils import *
- from utils.ry_system_util import *
- from utils.video_util import *
- from collections import defaultdict
- import traceback
- import json
- import time
- import math
- router = APIRouter()
- @router.get("/videos")
- async def get_videos(
- zoom_level: float = Query(..., description="Zoom level for clustering"),
- latitude_min: float = Query(..., description="Minimum latitude"),
- latitude_max: float = Query(..., description="Maximum latitude"),
- longitude_min: float = Query(..., description="Minimum longitude"),
- longitude_max: float = Query(..., description="Maximum longitude"),
- dict_value: str = Query(None),
- db: Session = Depends(get_db)
- ):
- try:
- # 根据缩放级别动态调整分组粒度
- distance_threshold = 1000 / (2 ** zoom_level) # 例如:每缩放一级,距离阈值减半
- que = True
- print(time.time())
- if dict_value:
- tag_info = get_dict_data_info(db, 'video_type', dict_value)
- if tag_info:
- if tag_info.dict_label!='全量视频':
- videolist = [i.video_code for i in tag_get_video_tag_list(db,dict_value)]
- que =TPVideoInfo.gbIndexCode.in_(videolist)
- # 查询分组
- print("1",time.time())
- query = (
- select(
- TPVideoInfo.cameraIndexCode,
- TPVideoInfo.gbIndexCode,
- TPVideoInfo.pixel,
- TPVideoInfo.cameraType,
- TPVideoInfo.cameraTypeName,
- TPVideoInfo.installPlace,
- TPVideoInfo.status,
- TPVideoInfo.statusName,
- TPVideoInfo.latitude,
- TPVideoInfo.longitude,
- TPVideoInfo.name,
- TPVideoInfo.unitIndexCode,
- func.ST_AsText(TPVideoInfo.location).label("location")
- )
- .select_from(TPVideoInfo).where(
- and_(
- TPVideoInfo.latitude >= latitude_min,
- TPVideoInfo.latitude <= latitude_max,
- TPVideoInfo.longitude >= longitude_min,
- TPVideoInfo.longitude <= longitude_max,
- TPVideoInfo.longitude>0,
- TPVideoInfo.latitude>0,que
- )
- )
- .order_by(TPVideoInfo.cameraIndexCode)
- )
- result = db.execute(query)
- print("2",time.time())
- videos = result.fetchall()
- print("3",time.time())
- # 动态分组逻辑
- # groups = {}
- groups = group_videos(videos, distance_threshold)
- # for video in videos:
- # grouped = False
- # for group_id, group in list(groups.items()):
- # for v in group["videos"]:
- # distance = calculate_distance(video, v)
- # if distance < distance_threshold:
- # groups[group_id]["videos"].append(video)
- # groups[group_id]["count"] += 1
- # grouped = True
- # break
- # if grouped:
- # break
- # if not grouped:
- # group_id = video.cameraIndexCode
- # groups[group_id] = {"count": 1, "videos": [video]}
- print("4",time.time())
- return {"code": 200,
- "msg": "操作成功",
- "data": groups}
- except Exception as e:
- # 处理异常
- traceback.print_exc()
- raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))
- def calculate_grid_size(distance_threshold):
- # 假设地球半径为6371公里,将距离阈值转换为经纬度的差值
- # 这里假设纬度变化对距离的影响较小,仅根据经度计算网格大小
- earth_radius = 6371 # 地球半径,单位为公里
- grid_size = distance_threshold / earth_radius
- return grid_size
- def get_grid_key(latitude, longitude, grid_size):
- # 根据经纬度和网格大小计算网格键
- return (math.floor(latitude / grid_size), math.floor(longitude / grid_size))
- def calculate_distance(video1, video2):
- # 使用 Haversine 公式计算两点之间的距离
- from math import radians, sin, cos, sqrt, atan2
- R = 6371 # 地球半径(公里)
- lat1, lon1 = radians(video1.latitude), radians(video1.longitude)
- lat2, lon2 = radians(video2.latitude), radians(video2.longitude)
- dlat = lat2 - lat1
- dlon = lon2 - lon1
- a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
- c = 2 * atan2(sqrt(a), sqrt(1 - a))
- return R * c
- def group_videos(videos, distance_threshold):
- grid_size = calculate_grid_size(distance_threshold)
- grid = defaultdict(list)
- groups = {}
- for video in videos:
- grid_key = get_grid_key(video.latitude, video.longitude, grid_size)
- grid[grid_key].append(video)
- for grid_key, grid_videos in grid.items():
- for video in grid_videos:
- grouped = False
- for group_id, group in list(groups.items()):
- for v in group["videos"]:
- if calculate_distance(video, v) < distance_threshold:
- groups[group_id]["videos"].append(video)
- groups[group_id]["count"] += 1
- grouped = True
- break
- if grouped:
- break
- if not grouped:
- group_id = video.cameraIndexCode
- groups[group_id] = {"count": 1, "videos": [video]}
- return groups
|